

Deutsche Ausgabe: DOI: 10.1002/ange.201505166 Internationale Ausgabe: DOI: 10.1002/anie.201505166

One Electron Makes Differences: From Heme {FeNO}⁷ to {FeNO}⁸

Bin Hu and Jianfeng Li*

Dedicated to Professor W. Robert Scheidt

Abstract: The first X-ray single-crystal structure of a $\{FeNO\}^8$ porphyrin complex $[Co(Cp)_2][Fe(TFPPBr_8)(NO)]$, and the structure of the $\{FeNO\}^7$ precursor $[Fe(TFPPBr_8)(NO)]$ are determined at 100 K. The two complexes are also characterized by FTIR and UV/Vis spectroscopy. [Fe(TFPPBr₈)(NO)]⁻ shows distinct structural features in contrast to a nitrosyl iron(II) porphyrinate on the Fe-N-O⁻ moiety, which include a much more bent Fe-N-O⁻ angle (122.4(3)°), considerably longer Fe-NO $^-$ (1.814(4)) and N-O $^-$ (1.194(5) Å) bond distances. These and the about 180 cm $^{-1}$ downshift v_{N-O} stretch (1540 cm⁻¹) can be understood by the covalently bonding nature between the iron(II) and the NO- ligand which possesses a two-electron-occupied π^* orbital as a result of the reduction. The overall structural features of [Fe(TFPPBr₈)-(NO)] and [Fe(TFPPBr₈)(NO)] suggest a low-spin state of the iron(II) atom at 100 K.

here has been considerable research interest over the past decades in the NO⁻ ligand (nitroxyl anion)^[1] not only because of its biological significance,^[2] but also because of its relationship with NO (nitric oxide or nitrosyl)^[3] and HNO (nitroxyl or azanone).^[4,5] NO⁻ is the one-electron-reduced form of NO. The important properties of NO in biology as a messenger and as an immune defense agent are significant in heme systems.^[6] NO⁻ is also the deprotonated form of HNO. There is great interest in the coordination chemistry of HNO and NO⁻ with hemes because of the role of these complexes as an important effector molecule in biology or as key intermediates in nitrite (NO₂⁻) and nitric oxide (NO) reducing enzymes.^[7,8]

NO⁻ is highly reactive and has its own distinct chemistry. It is isoelectronic with dioxygen (O_2); both can exist in singlet or triplet electronic spin states. Triplet NO⁻ reacts with O_2 to produce the ONOO⁻ (peroxynitrite) at a nearly diffusion-controlled rate $(2.7 \times 10^9 \, \text{m}^{-1} \, \text{s}^{-1})$, rather singlet NO⁻ does not. This is contrasted to NO which reacts with superoxide to produce the ONOO⁻. It has also been suggested that ONOO⁻ formation is observed when NO⁻ is formed by the reduction of NO by ferrocytochrome c.

[*] B. Hu, Prof. J. Li College of Materials Science and Opto-electronic Technology University of Chinese Academy of Sciences Yanqi Lake, Huairou District, Beijing, 101408 (China) E-mail: ifli@ucas.ac.cn

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.201505166.

Extensive studies,[13] including Fe^{II,III} ligand vibration identifications by single-crystal nuclear resonance vibrational spectroscopy (NRVS), [14,15] have been completed on ferro and ferric heme nitrosyl complexes which are labeled {FeNO}⁶ and {FeNO}⁷ in the Enemark-Feltham notation. [16] However, limited success has been achieved in producing corresponding, one-electron-reduced {FeNO}⁸ complexes where NO⁻ is formally bound to an iron(II) center. Several spectroelectrochemical studies on the reduction of ferrous heme-nitrosyl complexes to generate corresponding Fe^{II}–NO⁻ species have been reported.^[17] The groundbreaking isolation of a solid powder of the five-coordinate [Fe^{II}(Porph)(NO⁻)]^[18] by chemical reduction of the [FeII(Porph)(NO)] precursor was achieved by using the extremely electron-poor porphyrin H₂TFPPBr₈.^[19] Most recently, Lehnert and co-workers reported new reactivity data using a bis-picket fence porphyrin model system.^[20] Herein, we report the first structural determination of a {FeNO}⁸ porphyrin complex [Co(Cp)₂]-[Fe(TFPPBr₈)(NO)]. The characterization of the {FeNO}⁷ precursor [Fe(TFPPBr₈)(NO)] is also reported and the two species are compared.

To obtain single crystals of satisfactory quality for X-ray diffraction, different solvents have been tried in the reduction of [Fe(TFPPBr₈)(NO)]. Dichloromethane was first used because of its good solubility for the reactants. Three singlecrystal specimens from different reactions have been measured; in each case the iron and axial ligand show two positionally and crystallographically independent disorders. Disorders were also found for the [Co(Cp)₂]⁺ cation and CH₂Cl₂ solvent molecules. These are given in the Supporting Information. Subsequently toluene is used to replace CH₂Cl₂ and decent single crystals were isolated. The crystal structure was determined at 100 K.[21] The asymmetric unit contains one [Fe(TFPPBr₈)(NO)]⁻ porphyrin anion, one [Co(Cp)₂]⁺ cation, and toluene solvent molecules. All molecules including the $[Co(Cp)_2]^+$ cation are ordered, except one partially occupied toluene molecule. The crystalline product was further confirmed by FTIR and UV/Vis spectroscopy. A common FTIR spectrometer with a pyroelectric detector (DTGS) showed a shoulder peak at the position of the N-O stretch (Figures S5 and S6). Whereas the spectrometer with a liquid-nitrogen-cooled mercury-cadmium-telluride (MCT) detector afforded an unambiguous individual peak at 1540 cm⁻¹, which is first observed for an isolated sample. The comparison is shown in Figure 1. An important correlation between $\nu(N-O)$ of $\{FeNO\}^7$ and $\{FeNO\}^8$ systems has been given by Lehnert and co-workers. [20] [Fe(TFPPBr₈)-(NO)] and its precursor show the highest N-O stretches

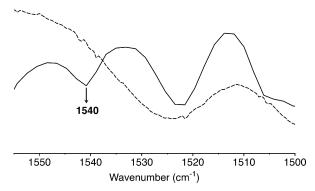
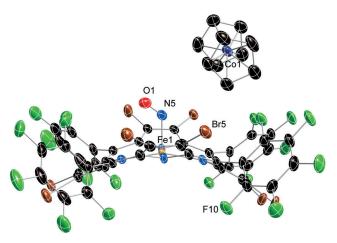
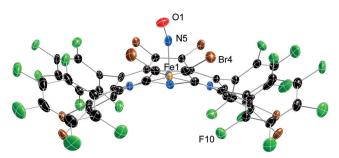



Figure 1. FTIR spectra of $[Co(Cp)_2][Fe(TFPPBr_8)(NO)]$. Only part of the spectrum is shown for clarity. Dashed and solid lines are for DTGS and MCT detectors, respectively.

among the analogs, which is ascribed to the electron-with-drawing peripheral groups.


An edge-on ORTEP drawing of [Co(Cp)₂][Fe(TFPPBr₈)-(NO)] is displayed in Figure 2. The NO- ligand binds to the iron(II) atom in a distinctly bent fashion with the Fe-N-Oangle being 122.4(3)°, which is much smaller than 149° for the Fe-N-O angles in {FeNO}⁷ analogs.^[13,22] Interestingly, this angle is comparable to the Fe-O-O angles (118-132°) in the diamagnetic oxyheme complexes [Fe(TpivPP)(R-Im)(O₂)] (R-Im = 1-MeIm, 1-EtIm and 2-MeHIm), [23] where the dioxygen ligand corresponds to a Pauling model with its singlet state. [24] The Fe-NO⁻ and N-O⁻ bond distances are 1.814(4) and 1.194(5) Å, respectively; both appear longer than those in a {FeNO}⁷ system. The Fe-NO⁻ bond is almost normal to the porphyrin plane with a tilt angle of 1.8°. The dihedral angle between the Fe-N-O plane and the closest Fe-N_p vector (φ) is 37.3° (see Figure S3 in the Supporting Information). The porphyrin plane is strongly saddled. These structural features are consistent with the DFT predictions of a singlet state.^[19]

The $\{FeNO\}^7$ precursor of $[Fe(TFPPBr_8)(NO)]$ is also structurally determined at 100 K. The asymmetric unit contains one $[Fe(TFPPBr_8)(NO)]$ porphyrin complex and one

Figure 2. Thermal ellipsoid diagram of $[Fe(TFPPBr_8)(NO)]$. Ellipsoids are drawn at the 50% probability level. Solvent molecules are not shown for reasons of clarity.

CH₂Cl₂ solvent molecule. An ORTEP drawing of the [Fe-(TFPPBr₈)(NO)] structure is given in Figure 3 and an overlay diagram showing both [Fe(TFPPBr₈)(NO)] and [Fe-(TFPPBr₈)(NO)]⁻ is given in Figure 4 for comparison. Similar to [Fe(TFPPBr₈)(NO)]⁻, the porphyrin core is strongly saddled, which suggests that it is the nature of the octabromo porphyrin derivatives that tend to show a saddled porphyrin core. [25] The NO ligand binds to the iron in a bent fashion with the Fe-N-O angle being 148.5(4)°. The Fe-NO bond is 1.741(5) Å long and has a tilt angle of 5.0°. The average Fe-N_p distance is 1.988(12) Å. The overall structural features are those expected for a low-spin {FeNO}⁷ porphyrin complex. [26]

Figure 3. Thermal ellipsoid diagram of $[Fe(TFPPBr_8)(NO)]$. Ellipsoids are drawn at the 50% probability level. Solvent molecules are not shown for reasons of clarity.

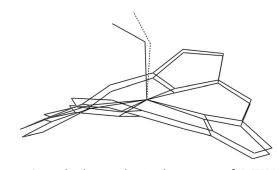


Figure 4. An overlay diagram showing the structures of [Fe(TFPPBr₈)-(NO)] and [Fe(TFPPBr₈)(NO)]⁻. Only the 24-atom porphyrin cores are shown for clarity. The molecules can be seen to have nearly identical core conformations. But the Fe–N–O moieties show distinct fashions.

Key structural parameters of [Fe(TFPPBr₈)(NO)]⁻, and the nitrosyl analogs of [Fe(TFPPBr₈)(NO)], [Fe(TPP)(NO)], and [Fe(OEP)(NO)] are given in Table 1; DFT predictions are also given for comparison. It is seen that the Fe-NO⁻ axial bond (1.814(4)) is considerably longer than the Fe-NO bond (1.717–1.741 Å). The shorter Fe–NO bond suggests stronger π back bonding from iron $d\pi$ orbitals to the NO ligand. However, the one-electron reduction of NO resulted in a π^* orbital of NO⁻ occupied by two electrons, which strengthened the σ bonding to the iron d_{z^2} orbital, which accounts for the $Fe-N-O^-$ angle, which is more bent in the $[Fe(TFPPBr_8)-$ (NO)] anion by about 26°. [13b] The higher electron density of the π^* orbital also results in a longer N-O- bond distance and a $180\,\mathrm{cm}^{-1}$ downshift of the $\nu_{\mathrm{N-O}}$ stretch (Table 1). Similar drops of $\nu_{\text{N-O}}$ have been observed by the research groups of Ryan^[17b,c] and Lehnert.^[20]

Table 1: Selected Structural Parameters of {FeNO}⁸, {FeNO}⁷, and {CONO}⁸ porphyrin complexes and related DFT predications.^[a]

Complexes	Method	$M-N_{NO}^{[b]}$	$N-O_{[p]}$	$(M-N_p)_{av}^{[b]}$	$M{-}N{-}O_{[c]}$	$ au^{[c,d]}$	$ u_{\text{N-O}}^{[e]} $	Ref.
		{FeNC)} ⁸ Structures and	DFT Predications				
[Fe(TFPPBr ₈)(NO)] ⁻	SC	1.814(4)	1.194(5)	1.972(11)	122.4(3)	1.8	1540	tw ^[g]
[Fe(TFPPBr ₈)(NO)]	DFT	1.790	1.201		122.7		1547 ^[f]	[19]
[Fe(Porphine)(NO)]	DFT	1.778	1.211		123.1		1530	[19]
[Fe(Porphine)(NO)]	DFT	1.786	1.206	2.011	125		1533	[20]
Mb-HNO	XAFS	1.82(2)	1.24(1)	2.00(2)	131(6)		1385	[5a]
		{FeNC) ⁷ Structures and	DFT Predications				
[Fe(TFPPBr ₈)(NO)]	SC	1.741(5)	1.131(6)	1.988(12)	148.5(4)	5.0	1718	tw
[Fe(TPP)(NO)]	SC	1.717(7)	1.122(12)	2.001(3)	149.2(6)		1670	[22]
[Fe(OEP)(NO)]	SC	1.7307(7)	1.1677(11)	2.009(12)	142.74(8)	8.2	1673	[29]
[Fe(TFPPBr ₈)(NO)]	DFT	1.711	1.182		144.4		1726 ^[f]	[19]
			{CoNO} ⁸ Stru	ctures				
$[Co(TPPBr_4NO_2)(NO)]$	SC	1.827(21)	1.081(43)	1.945 (28)	124.7(23)	1.9	1710	[30]
[Co(OEP)(NO)]	SC	1.8444(9)	1.1642(13)	1.984(8)	122.70(8)	2.2	1677	[31]
[Co(OEP)(NO)]	SC	1.844(2)	1.152(3)	1.985(9)	123.4(2)		1675	[32]
[Co(TPP)(NO)]	SC	1.8301 (5)	1.1492(7)	1.9672(6)	123.39(5)	0.6	1681	[33]

[a] Estimated standard deviations are given in parentheses. [b] Value in angstroms. [c] Value in degrees. [d] The tilt of the Fe-NO vector from normal to the 24-atom mean plane. [e] Values in cm⁻¹. [f] Experimental value. [g] This Work.

24-atom mean planes of [Fe(TFPPBr₈)(NO)]⁻ and [Fe-(TFPPBr₈)(NO)] are presented in Figure S3. The iron of [Fe(TFPPBr₈)(NO)] shows a two-fold smaller out-of-plane displacement ($\Delta_{24} = 0.19 \text{ Å}$) than that of [Fe(TFPPBr₈)(NO)] (0.36 Å), which is in agreement with its shorter (Fe-N_p)_{av} bond distance and slightly larger (N_p-Fe-N_p)_{av} angle (89.9(8) vs. 89.0(3)°). The lower and upper extremes of metal displacements for a low-spin, five-coordinate nitrosyl iron(II) porphyrin complex are 0.19 and 0.36 Å. [27]

In Table 1 structural parameters of several nitrosyl cobalt-(II) porphyrinates are given. It is seen that {FeNO}⁸ and {CoNO}⁸ systems show a strong similarity in the geometry of the M-N-O moieties, suggesting the highly covalent nature of the triatomic M-N-O units. The M-N-O angles of the {CoNO}⁸ system are very similar to that of the {FeNO}⁸ system, the values of which are in a narrow range of 122-125°. In a {CoNO}⁸ complex, the low-spin d⁷ cobalt(II) atom and the nitrosyl molecule contribute each one electron to form the Co–NO σ bonding.^[28] This is compared to the same strong σ bonding of the Fe-NO- bond, where the two electrons originate from the π^* orbital of the NO⁻ ligand. However, different electron density populations are indicated by N-O bond stretches. [Fe(TFPPBr₈)(NO)]⁻ with its twoelectron π^* orbital shows the lowest $\nu_{\text{N-O}}$ (1540 cm⁻¹) of the three systems, in contrast to the about 140 cm⁻¹ higher ν_{N-0} of the {CoNO}⁸ and {FeNO}⁷ complexes where only one electron occupies the π^* orbital of the NO ligand.

In summary, we have synthesized and characterized the {FeNO}⁸ porphyrin complex [Fe(TFPPBr₈)(NO)]⁻ and its nitrosyl precursor [Fe(TFPPBr₈)(NO)] by single-crystal X-ray diffraction and FTIR and UV/Vis spectroscopy. The highquality crystallographic study reveals distinct differences on the Fe-NO moieties between the two systems. Both species present structural characteristics belonging to a low-spin iron(II) porphyrin complex at 100 K. Physical characterizations including multi-temperature Mössbauer measurements on [Fe(TFPPBr₈)(NO)] and [Co(Cp)₂][Fe(TFPPBr₈)(NO)] are in progress.

Experimental Section

Synthesis of [Fe(TFPPBr₈)(NO)]: [Fe(TFPPBr₈)Cl] (100 mg, 0.048 mmol) was dried in vacuum for 1 h in a Schlenk tube. Dichloromethane (ca. 10 mL) was transferred into the Schlenk tube by cannula and ethanethiol (ca. 4 mL) was added via syringe. The mixture was stirred under argon at ambient temperature. After 5 h, the reduction was completed (monitored by UV/Vis spectroscopy) and the solvent was evaporated by the pump. NO gas was bubbled in slowly through a solution of the residue in degassed dichloromethane (ca. 8 mL) for 5 minutes under an argon atmosphere. There is a dramatic color change from red to greenish yellow and the reaction was thought to be complete upon the disappearance of the red color. X-ray quality crystals were obtained by liquid diffusion using hexane as the non-solvent. UV/vis (CH₂Cl₂): $\lambda_{\text{max}} = 430$, 582 nm. IR (Nujor): ν (N-O) = 1718 cm⁻¹.

Synthesis of [Co(Cp)₂][Fe(TFPPBr₈)(NO)]: [Fe(TFPPBr₈)(NO)] (10 mg, 0.0059 mmol) and $Co(C_5H_5)_2$ (1 mg, 0.053 mmol) was dried in vacuum for 1 h in a Schlenk tube. Dichloromethane (ca. 5 mL) was transferred into the Schlenk tube by cannula. The mixture was then stirred for an hour under argon at ambient temperature. The product, which precipitated after the addition of 5 mL of cold hexane, was separated from the solution by filtration. The resulting solid was dissolved in toluene and hexane was then allowed to diffuse slowly into the solution. Crystals of X-ray quality were obtained several weeks later. UV/Vis (CH₂Cl₂): $\lambda_{max}\!=\!430,\,582$ nm. IR (KBr plates): $\nu(N-O) = 1540 \text{ cm}^{-1}$.

Acknowledgements

Research reported in this publication was supported by a CAS Hundred Talent Program and National Natural Science Foundation of China (grant number 21371167) to J.L.

Keywords: crystal structure · iron · enzymes · porphyrins · X-ray diffraction

How to cite: Angew. Chem. Int. Ed. 2015, 54, 10579-10582 Angew. Chem. 2015, 127, 10725-10728

- [1] The chemical notation for nitroxyl (NO-/HNO) is often used interchangeably, but here the term NO- denotes nitroxyl anion with the understanding that the molecule can exist as a protonated species as well.
- [2] a) C. E. Cooper, Biochim. Biophys. Acta Bioenerg. 1999, 1411, 290; b) J. S. Stamler, D. J. Singel, J. Loscalzo, Science 1992, 258, 1898; c) L.-O. Klotz, H. Sies in Methods in Enzymology, Vol. 349 (Ed.: P. Lester), Academic Press, 2002, p. 101.
- [3] M. N. Hughes, Biochim. Biophys. Acta Bioenerg. 1999, 1411, 263.
- [4] a) F. Doctorovich, D. E. Bikiel, J. Pellegrino, S. A. Suárez, M. A. Martí, Acc. Chem. Res. 2014, 47, 2907; b) A. L. Speelman, N. Lehnert, Acc. Chem. Res. 2014, 47, 1106.
- [5] a) C. E. Immoos, F. Sulc, P. J. Farmer, K. Czarnecki, D. F. Bocian, A. Levina, J. B. Aitken, R. S. Armstrong, P. A. Lay, J. Am. Chem. Soc. 2005, 127, 814; b) J. Lee, G. B. Richter-Addo, J. Inorg. Biochem. 2004, 98, 1247; c) M. A. Rhine, A. V. Rodrigues, R. J. B. Urbauer, J. L. Urbauer, T. L. Stemmler, T. C. Harrop, J. Am. Chem. Soc. 2014, 136, 12560.
- [6] a) L. J. Ignarro, Nitric Oxide: Biology and Pathobiology, 2nd ed., Elsevier, Amsterdam, 2010; b) F. Terenzi, M. J. M. Diaz-Guerra, M. Casado, S. Hortelano, S. Leoni, L. Bosca, J. Biol. Chem. 1995, 270, 6017; c) J. C. Drapier, C. Pellat, Y. Henry, J. Biol. Chem. 1991, 266, 10162; d) A. R. Butler, D. L. H. Williams, Chem. Soc. Rev. 1993, 22, 233.
- [7] a) K. M. Miranda, Coord. Chem. Rev. 2005, 249, 433; b) F. Doctorovich, D. E. Bikiel, J. Pellegrino, S. A. Suárez, M. A. Martí in Adv Inorg Chem, Vol. 64 (Eds.: E. van Rudi, I.-B. Ivana), Academic Press, 2012, pp. 97.
- [8] S. Hematian, I. Kenkel, T. E. Shubina, M. Dürr, J. J. Liu, M. A. Siegler, I. Ivanovic-Burmazovic, K. D. Karlin, J. Am. Chem. Soc. **2015**. *137*. 6602.
- [9] V. Shafirovich, S. V. Lymar, Proc. Natl. Acad. Sci. USA 2002, 99, 7340.
- [10] a) C. E. Donald, M. N. Hughes, J. M. Thompson, F. T. Bonner, Inorg. Chem. 1986, 25, 2676; b) J. H. Jorolan, L. A. Buttitta, C. Cheah, K. M. Miranda, Nitric Oxide 2015, 19, 39.
- [11] a) N. V. Blough, O. C. Zafiriou, Inorg. Chem. 1985, 24, 3502; b) R. Radi, J. S. Beckman, K. M. Bush, B. A. Freeman, J. Biol. Chem. 1991, 266, 4244.
- [12] M. A. Sharpe, C. E. Cooper, Biochem. J. 1998, 332, 9.
- [13] a) G. R. A. Wyllie, W. R. Scheidt, Chem. Rev. 2002, 102, 1067; b) N. Lehnert, W. R. Scheidt, M. Wolf in Nitrosyl Complexes in Inorganic Chemistry, Biochemistry and Medicine II, Vol. 154 (Ed.: D. M. P. Mingos), Springer, Berlin, 2014, p. 155.
- [14] a) J. T. Sage, C. Paxson, G. R. A. Wyllie, W. Sturhahn, S. M. Durbin, P. M. Champion, E. E. Alp, W. R. Scheidt, J. Phys. Condens. Matter 2001, 13, 7707; b) W. R. Scheidt, S. M. Durbin, J. T. Sage, J. Inorg. Biochem. 2005, 99, 60; c) J. W. Pavlik, A. Barabanchikov, A. G. Oliver, E. E. Alp, W. Sturhahn, J. Zhao, J. T. Sage, W. R. Scheidt, Angew. Chem. Int. Ed. 2010, 49, 4400;

- Angew. Chem. 2010, 122, 4502; d) N. Lehnert, J. T. Sage, N. Silvernail, W. R. Scheidt, E. E. Alp, W. Sturhahn, J. Zhao, Inorg. Chem. 2010, 49, 7197.
- [15] J. Li, Q. Peng, A. G. Oliver, E. E. Alp, M. Y. Hu, J. Zhao, J. T. Sage, W. R. Scheidt, J. Am. Chem. Soc. 2014, 136, 18100.
- [16] J. H. Enemark, R. D. Feltham, Coord. Chem. Rev. 1974, 13, 339.
- [17] a) D. Lançon, K. M. Kadish, J. Am. Chem. Soc. 1983, 105, 5610; b) I. K. Choi, Y. Liu, D. Feng, K. J. Paeng, M. D. Ryan, Inorg. Chem. 1991, 30, 1832; c) Z. Wei, M. D. Ryan, Inorg. Chem. 2010,
- [18] Abbreviations: CH₂Cl₂, dichloromethane; Cp, cyclopentadienyl; Porph, a generalized porphyrin dianion; TFPPBr₈, dianion of 2,3,7,8,12,13,17,18-octabromo-5,10,15,20-[tetrakis-(pentafluorophenyl) porphyrin; TpivPP, dianion of $\alpha,\alpha,\alpha,\alpha$ -tetrakis (o-pivalamidophenyl)porphyrin; TPP, dianion of meso-tetraphenylporphyrin; OEP, dianion of octaethyl ltetranitroporphyrins; TPPBr₄NO₂, dianion of 2-nitro-7.8.17.18-tetrabromo-5,10,15,20-tetraphenylporphyrin; 1-MeIm, 1-methylimidazole; 1-EtIm, 1-ethylimidazole; 2-MeHIm, 2-methylimidazole; N_p, porphyrinato nitrogen.
- [19] J. Pellegrino, S. E. Bari, D. E. Bikiel, F. Doctorovich, J. Am. Chem. Soc. 2010, 132, 989.
- [20] L. E. Goodrich, R. Saikat, E. E. Alp, J. Zhao, M. Y. Hu, N. Lehnert, Inorg. Chem. 2013, 52, 7766.
- [21] CCDC 1403642 ([CoCp₂][FeTFPPBr₈NO]), ([FeTFPPBr₈NO]) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.
- [22] W. R. Scheidt, M. E. Frisse, J. Am. Chem. Soc. 1975, 97, 17.
- [23] J. Li, B. C. Noll, A. G. Oliver, C. E. Schulz, W. R. Scheidt, *J. Am*. Chem. Soc. 2013, 135, 15627.
- [24] a) L. Pauling, C. D. Coryell, Proc. Natl. Acad. Sci. USA 1936, 33, 210; b) L. Pauling, Nature 1964, 203, 182.
- [25] a) E. R. Birnbaum, J. A. Hodge, M. W. Grinstaff, W. P. Schaefer, L. Henling, J. A. Labinger, J. E. Bercaw, H. B. Gray, Inorg. Chem. 1995, 34, 3625; b) D. Mandon, P. Ochenbein, J. Fischer, R. Weiss, K. Jayaraj, R. N. Austin, A. Gold, P. S. White, O. Brigaud, Inorg. Chem. 1992, 31, 2044.
- [26] W. R. Scheidt, M. K. Ellison, Acc. Chem. Res. 1999, 32, 350.
- [27] G. R. A. Wyllie, N. J. Silvernail, A. G. Oliver, C. E. Schulz, W. R. Scheidt, Inorg. Chem. 2014, 53, 3763.
- [28] W. R. Scheidt, J. L. Hoard, J. Am. Chem. Soc. 1973, 95, 8281.
- [29] W. R. Scheidt, H. F. Duval, T. J. Neal, M. K. Ellison, J. Am. Chem. Soc. 2000, 122, 4651.
- [30] K. M. Kadish, Z. Ou, X. Tan, T. Boschi, D. Monti, V. Fares, P. Tagliatesta, J. Chem. Soc. Dalton Trans. 1999, 1595.
- [31] M. K. Ellison, W. R. Scheidt, Inorg. Chem. 1998, 37, 382.
- [32] N. Godbout, L. K. Sanders, R. Salzmann, R. H. Havlin, M. Wojdelski, E. Oldfield, J. Am. Chem. Soc. 1999, 121, 3829.
- [33] L. M. Grande, B. C. Noll, A. G. Oliver, W. R. Scheidt, Inorg. Chem. 2010, 49, 6552.

Received: June 6, 2015 Published online: July 14, 2015